En términos intuitivos, si una variable y, depende de una segunda variable u, que a la vez depende de una tercera variable x; entonces, la razón de cambio de y con respecto a x puede ser calculada con el producto de la razón de cambio de y con respecto a u multiplicado por la razón de cambio de u con respecto a x.
Descripción algebraica
En términos algebraicos, la regla de la cadena (para funciones de una variable) afirma que si es diferenciable en y es una función diferenciable en , entonces la función compuesta es diferenciable en y
Ejemplo conceptual
Supóngase que se está escalando una montaña a una razón de 0,5 kilómetros por hora. La razón a la cual la temperatura decrece es 6 °F por kilómetro (la temperatura es menor a elevaciones mayores). Al multiplicar 6 °F por kilómetro y 0,5 kilómetros por hora, se obtiene 3 °F por hora, es decir, la razón de cambio de temperatura con respecto al tiempo transcurrido.Este cálculo es una aplicación típica de la regla de la cadena.Ejemplo algebraico
Por ejemplo si es una función derivable de y si además es una función derivable de entonces es una función derivable con:o tambiénEjemplo 1
y queremos calcular:Por un lado tenemos dirmel:ysi:entonces:Si definimos como función de función:resulta que:
No hay comentarios:
Publicar un comentario